PHMSA Research, Technical and Policy Perspectives

Working Group #1

Gas Gathering

Steve Nanney & Robert Smith

Pipeline Research and Development Forum February 19-20, 2020

Good Afternoon and Welcome!

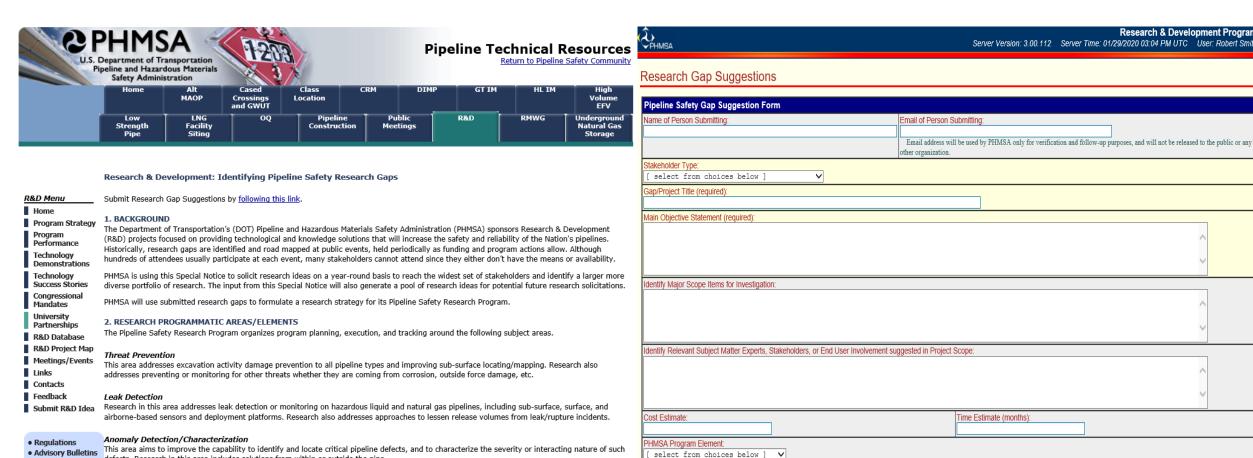
- Gas Gathering Working Group Objective Identify technical gaps not being addressed by others on which PHMSA could develop a comprehensive research portfolio
 - Solutions are sought in technology and knowledge enabling safe operations
- This group may cover any and all aspects of gas gathering operations
 - The group agenda and audience make up will govern where we cover over the next
 2 days

Before we begin – Lets tally the audience make up

PHMSA Research Perspective

- No Gas Gathering (GG) related funded research to date
- Research Program GG Areas of Interest? To name a few...
 - Pipe Design and Materials
 - Threat/Damage Prevention (outside force and cathodic protection)
 - Leak Detection
 - Anomaly Detection and Characterization
 - Construction and Decommissioning

 Research Program will build a portfolio over time and record outputs and outcomes through our website


Considerations for projects at TTC

- What project(s) would lend itself well to being conducted at TTC?
 - Near real-world scenarios, can't be performed elsewhere, and/or could benefit from TTC intermodal capabilities
- What are examples of challenges associated with project that would need to be addressed?
 - Confidentiality of data for some aspects, overall security
 - Equipment needs
 - Building and infrastructure needs
- Other considerations?
- Who would be good to provide input for conceptual, types of equipment, and operational needs for launching and maintaining a world class research and test facility

Submitting Research Gap Ideas

Anyone, Anywhere and Anytime via https://primis.phmsa.dot.gov/matrix/

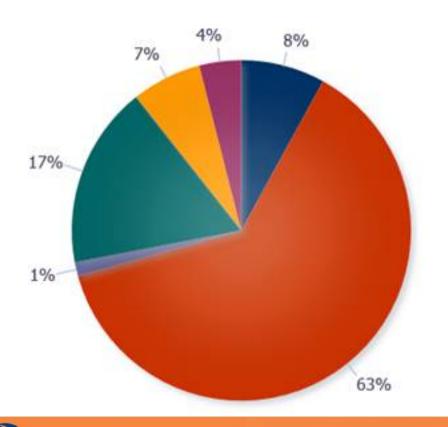
Research & Development Program

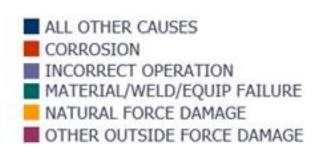
Server Version: 3.00.112 Server Time: 01/29/2020 03:04 PM UTC User: Robert Smith

defects. Research in this area includes solutions from within or outside the pipe.

What are the safety concerns for Gas Gathering Pipelines?

- More pipe is proposed to be regulated based upon pipeline diameter, pressure, and location proximity in the following areas:
- 1. Design, installation, construction, inspection and testing
- Corrosion control
- 3. Damage prevention
- Public awareness
- 5. Establish maximum allowable operating pressure
- Line markers
- 7. Leakage surveys and repairs
- 8. Emergency plans and implementation


What incident causes should we consider? Regulated Gas Gathering Significant Incidents – 2008-2017


Significant Incident Cause Breakdown 10 Year Average (2008-2017)

System Type: GAS GATHERING State: (All Column Values) Offshore: (All Column Values)

CY 2008 to 2017 Leading Causes:

Corrosion - 63%
Material/Weld/Equipment Failure - 17%
All Other Causes - 8%

Safety Administration

Gas Gathering Estimate of Unregulated Mileage

Gas Gathering – Unregulated – PHMSA Estimate – through 2018					Total Miles
Current Estimate					426,109
Gas Gathering - Type A, Area 2 (high stress, ≥ 8.625") Proposed in Rulemaking— 2018 Estimate					
Diameter	≥ 8.625" to < 12.75"	12.75"	> 12.75" to ≤ 16"	> 16"	Total Miles
Estimate through 2018	46,094	19,665	12,604	12,500	90,863

> 12.75" diameter gas gathering~ 25,104 miles

Regulated Gas Gathering Mileage by Class Location

Facility Type	Class 1	Class 2	Class 3	Class 4	Total
Onshore Type A	NA	5,616	2,665	7	8,288
Onshore Type B	NA	1,677	1,670	26	3,373
Offshore	6,183	NA	NA	NA	6,183
Total	6,183	7,293	4,335	33	17,845

2018 Gas Transmission and Gas Gathering Annual Report NA – not applicable

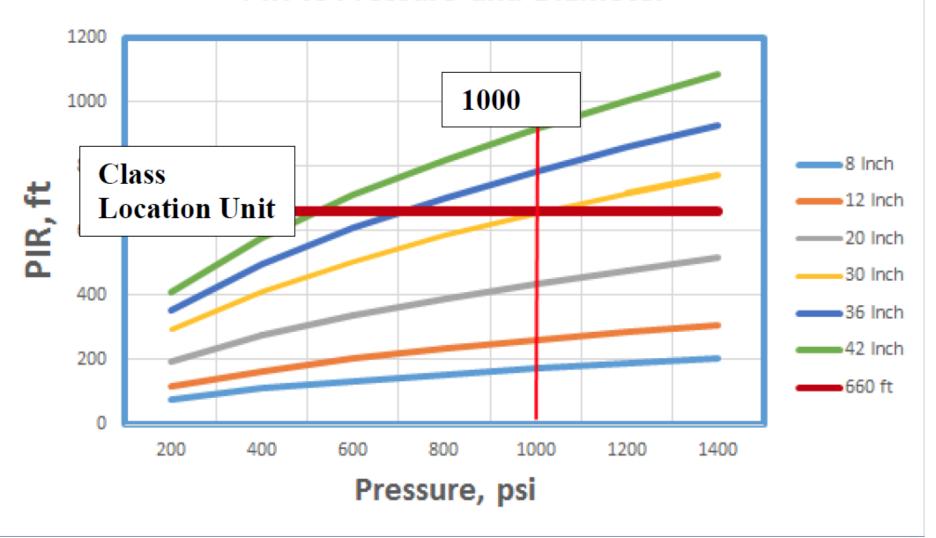
Regulated Gas Gathering Mileage by Diameter

Pipe Type	12.75-inches or Less	Greater than 12.75-inches	Total
Onshore Type A	6,720	1,568	8,288
Onshore Type B	3,223	150	3,373
Offshore	1,867	4,316	6,183
Total	11,810	6,035	17,845

Type A – defined per 49 CFR 192.8 as \geq 20% SMYS for steel pipelines and for non-metallic > 125 psig.

Type B – defined per 49 CFR 192.8 as < 20% SMYS for steel pipelines and for non-metallic ≤ 125 psig.

2018 Gas Transmission and Gas Gathering Annual Report



Estimated Unregulated Gathering By Diameter

Diameter (inches)	Unregulated Gathering Miles (Total, no PIR adjustment)
8	32,528
10	13,565
12	19,665
14	1,184
16	11,421
18	798
20	5,338
22	356
24	3,216
>24	2,791

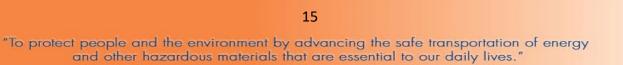
PIR vs Pressure and Diameter

Scope of Newly Regulated Gas Gathering - § 192.8(b) and(c)

GPAC Committee Voting Slides

With regard to the scope of newly regulated gas gathering in § 192.8(b) and (c), the proposed rule as published in the Federal Register and the Draft Regulatory Evaluation, is technically feasible, reasonable, cost-effective, and practicable if PHMSA considers the following:

- Establish an initial framework to build upon based on future information and experience.
- Set a minimum set of requirements for pipelines 8.625 inches in diameter and greater (considering, for example: damage prevention; line markers; public awareness; leak surveys and repairs; design, installation, construction, and initial inspection and testing for new lines; and emergency plans). Give due consideration to the GPAC discussion on leak surveys.
- Consider applying a PIR concept and additional requirements to provide safety and environmental protection for larger diameter pipelines (e.g., greater than 12.75").
- Ensure that composite pipe is adequately addressed to minimize the impact on its continued use.



14

Planned PHMSA Research

- R&D study to review the safety, materials and design requirements for in service and future service natural gas transmission and gathering pipelines regulated under 49 CFR Part 192 that use non-steel pipe or steel pipe connected by non-welding techniques.
- A review of such systems is sought operating over 125 psig to 2180 psig pressure and over 100 degrees Fahrenheit. The following key questions should answered:
 - Should there be limits for maximum operating pressure and temperature?
 - What should be the operating life span? What parameters should be reviewed, tests conducted, and updated (maintained) to achieve the operating life span?
 - Should these type pipes have a periodic test program to ensure material properties are not degrading? What should be included in an optimum type test program (type of tests, test interval)?
 - What material, design, construction, operating and integrity management aspects of Part 192 or relevant consensus standards should be used?

Planned PHMSA Research

The following key questions should be answered:

- What new items should be added to Part 192 just for the unique properties of the pipe such as:
 - repair (when? and how?),
 - operating pressure and safe pressure calculations,
 - bending,
 - depth of cover for prevention of 3rd party damage, leakage where there are multiple layers,
 - effects of ultraviolet rays on the pipe for storage and transportation,
 - loss of strength over time,
 - loss of MAOP due to anomaly growth (corrosion, denting, cracking, etc.),
 - pressure cycling and fatigue effects,
 - other chemical/petroleum effects on the pipe,
 - need for cathodic protection, etc.

Planned PHMSA Research

The following key questions should be answered:

- Under what conditions should or shouldn't non-steel pipe be allowed in Class 2, 3, and 4 locations, high consequence areas, freeway/railroad crossings, waterways, etc.
- What type design, construction, maintenance and integrity management activities should be performed, if it is allowed?
- What Construction Operator Qualifications (OQ) and Operational OQ requirements should be placed on the Pipeline Operator?
- What should the training program include?

Thank You!/Research Contacts

Sentho White

Director – Engineering & Research
Department of Transportation
Pipeline & Hazardous Materials Safety Administration
Office of Pipeline Safety
P(202) 366-2415
Email sentho.white@dot.gov

Robert Smith

Department of Transportation
Pipeline & Hazardous Materials Safety Administration
Office of Pipeline Safety
P(919) 238-4759
Email robert.w.smith@dot.gov

Joshua Arnold

Department of Transportation
Pipeline & Hazardous Materials Safety Administration
Office of Pipeline Safety
P(202) 366-6085
Email joshua.arnold@dot.gov

Zhongquan Zhou (ZZ)

Department of Transportation
Pipeline & Hazardous Materials Safety Administration
Office of Pipeline Safety
P(202)-366-0318
Email zhongquan.zhou@dot.gov

Visit us at https://www.phmsa.dot.gov/ and search "Research"

